This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713597274
Dilute Solution Properties of Poly(methacrylonitrile-co-styrene) and Poly(acrylonitrile-co-styrene)
G. Venkataramanareddy ${ }^{\text {ab }}$; K. S. V. Srinivasan ${ }^{\text {ab }}$; M. Santappa ${ }^{\text {ab }}$
${ }^{a}$ Department of Physical Chemistry, University of Madras, Madras, India ${ }^{\text {b }}$ Central Leather Research Institute, Madras, India

To cite this Article Venkataramanareddy, G., Srinivasan, K. S. V. and Santappa, M.(1977) 'Dilute Solution Properties of Poly(methacrylonitrile-co-styrene) and Poly(acrylonitrile-co-styrene)', Journal of Macromolecular Science, Part A, 11: 11, 2123-2141
To link to this Article: DOI: 10.1080/00222337708061353
URL: http://dx.doi.org/10.1080/00222337708061353

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Dilute Solution Properties of Poly(methacrylonitrile-co-styrene) and Poly(acrylonitrile-co-styrene)

G. VENKATARAMANA REDDY,* K. S. V. SRINIVASAN,* and M. SANTAPPA*

Department of Physical Chemistry
University of Madras
Madras-25, India

Abstract

Poly(methacrylonitrile-co-styrene) (PMANS) and Poly(acrylo-nitrile-co-styrene) (PANS) having $1: 1$ composition were prepared with free-radical initiators. The polymers were fractionated into fractions having narrow molecular weight distribution. The dilute solution properties of the fractionated copolymers were studied by light scattering, viscometry, and osmometry in solvents (methyl ethyl ketone, dimethylformamide, and acetone), $[\eta]-\overline{\mathrm{M}}_{\mathrm{w}}$ and $\left(\overline{\mathrm{r}}^{2}\right)_{\mathrm{w}}^{1 / 2}-\overline{\mathrm{M}}_{\mathrm{w}}$ relationships have been established. The validity of the various graphical methods for the determination of Flory's constant, K_{θ} were observed. From the values of the steric factors it was noticed that the copolymer coil of PANS is stiffer than that of PMANS.

[^0][^1]
INTRODUCTION

Studies on configurational and frictional properties of copolymers are few, in spite of the increasing technological importance of copolymers. This may be due to the experimental difficulties encountered in the investigation of copolymer solutions. Determination of weightaverage molecular weight is complicated by the heterogeneity due to composition as well as the sequence length of monomer units in the copolymer molecule. Stockmayer et al. [1] have shown that copolymer molecules are usually more expanded in solution than would be expected from the averaged behavior of the corresponding homopolymers, because of the repulsive interactions between the unlike monomer units. Utiyama and Kurata [2] found that neither the longrange interaction parameter nor the unperturbed dimensions coincide with the simple averages of the parent homopolymers and they suggested that the unperturbed dimension depends upon the arrangement of three successive monomer units in the copolymer. Similar observations have been reported for other copolymers [3-5]. However, for block copolymers, several experimenters found [6-10] that the "sequence length" of the monomer units play a significant role in influencing the dilute solution properties. Also, it has been observed that the substituents affect the unperturbed dimensions and other thermodynamic parameters in solution. We have prepared poly-(acrylonitrile-co-styrene) and poly(methacrylonitrile-co-styrene) of $1: 1$ composition and investigated their solution behavior in different solvents.

EXPERIMENTAL

Materials

Methyl ethyl ketone (L. R., B. D. H.), dimethylformamide (L. R., B. D. H.), acetone (A. R., B. D. H.), ethyl acetate (A. R., B. D. H.), chloroform (L. R., B. D. H.) and methanol (Fertilizer Corporation of India, Bombay) were purified according to standard procedures [11]. Methacrylonitrile (E. Merck, Darmstadt, Germany), acrylonitrile (L. R., B. D. H.), were purified by washing with sodium hydroxide (5\%) and with orthophospheric acid followed by distilled water. Styrene (Hindustan Polymers Ltd., Vizag, India) was washed three times with sodium hydroxide (5\%) followed by distilled water. The washed monomers were dried over anhydrous sodium sulfate and distilled under reduced pressure in an atmosphere of dry nitrogen prior to use.

Copolymerization

Bulk copolymerization of methacrylonitrile and styrene was carried out with calculated amounts of monomers [12] at $60^{\circ} \mathrm{C}$ in an atmosphere of pure dry nitrogen with the use of benzoyl peroxide (0.1% by weight) as free-radical initiator in order to get nearly alternating copolymer, poly(methacrylonitrile-co-styrene) (PMANS) of 1:1 composition. The conversion was restricted approximately to 10% in order to get nearly homogeneous composition. The polymer was precipitated in methanol and purified by reprecipitation from methyl ethyl ketone solution and dried under vacuum at $55^{\circ} \mathrm{C}$. Similarly 1:1 poly(acrylonitrile-co-styrene) (PANS) [13] was prepared by bulk copolymerization from the calculated quantities of monomers, calculated from the reactivity ratios of acrylonitrile (0.04) and styrene (0.40). The conversion was restricted to $<10 \%$ to avoid composition heterogeneity. Methyl ethyl ketone and methanol were used as solvent and nonsolvent, respectively.

Fractionation

Fractionations [14] of PANS and PMANS were carried out by using methyl ethyl ketone as solvent and methanol as nonsolvent. Also fractionation of PANS was done with chloroform as solvent and methanol as nonsolvent. Fifteen fractions, each varying from 0.4 to 0.6 g in weight were obtained.

Osmometry

The number-average molecular weights were determined by the use of a Pinner-Stabin osmometer (Colchester Instruments Ltd., U. K.) with preconditioned gel cellulose (Pcel 600) membranes. The osmotic pressure π of the polymer samples, PMANS ${ }_{2}$, PMANS $_{6}$, PANS $_{1}$, and PANS $_{D}$ were measured at $30 \pm 0.01^{\circ} \mathrm{C}$ and the numberaverage molecular weights were obtained from the plots of $(\pi / \mathrm{c})^{1 / 2}$ versus c. Methyl ethyl ketone and acetone were used as solvents for study. The polydispersity of the fractions was calculated from the ratio of molecular weights obtained by light scattering and osmometry and was found to be $1.09,1.13,1.38$, and 1.27 for PMANS ${ }_{2}$, PMANS $_{6}$, PANS $_{1}$, and PANS ${ }_{D}$, respectively.

Viscosity
Intrinsic viscosity of the fractions were determined at $30^{\circ} \mathrm{C}$ by the use of a suspended-level dilution viscometer (Colchester Instruments Ltd., U. K.). The limiting viscosity numbers [η] were obtained as the mean of the three values obtained from Eqs. (1), (2), and (3) [15],

$$
\begin{equation*}
\eta_{\mathbf{s p}} / \mathbf{c}=[\eta]+\mathbf{k}_{1}[\eta]^{2} \mathbf{c} \tag{1}
\end{equation*}
$$

due to Huggins [16]

$$
\begin{equation*}
\left(\ln \eta_{\mathrm{rel}}\right) / \mathbf{c}=[\eta]-\mathbf{k}_{\mathbf{2}}[\eta]^{2} \mathbf{c} \tag{2}
\end{equation*}
$$

due to Kraemer [17], and

$$
\begin{equation*}
\left(\eta_{\mathrm{sp}} / \mathrm{c}=[\eta]+\mathrm{k}_{3} \eta_{\mathrm{sp}}[\eta]\right. \tag{3}
\end{equation*}
$$

due to Schulz and Blascke [18].

Light Scattering

The weight-average molecular weights of the polymer fractions were determined by light scattering measurements, with a BricePhoenix universal light scattering photometer [19] (1000 series, Phoenix Precision Instruments Company, Philadelphia) over the angular range 45° to 135° with a cylindrical cell and with unpolarized light of wavelength $4356 \AA$. The instrument was standardized by Standard polystyrene supplied by International Bureau of Standards, Washington. The solvents and solutions were filtered directly into the cell and the variation in concentration (2×10^{-3} to $5 \times 10^{-4} \mathrm{~g} / \mathrm{ml}$) of the polymer was achieved by successive dilutions. Corrections were made for the measurements made with DMF as solvent for fluorescence.

Refractive index increments ($\mathrm{dn} / \mathrm{dc}$), of the samples in various solvents were determined in a Brice-Phoenix differential refractometer [20] at 4356 A (No. 1974, Phoenix Precision Instruments Company, Philadelphia). The dn/dc values for PMANS/MEK, PMANS/DMF, PMANS/ethyl acetate, PANS/MEK, and PANS/DMF systems were found to be $0.183 \pm 0.003,0.105 \pm 0.003,0.183 \pm 0.004$, 0.182 ± 0.003, and 0.105 ± 0.003, respectively.

Treatment of Data

Light scattering data were treated according to Zimm [21]. Plots of $\mathrm{Kc} / \mathrm{R}_{\theta}$ versus $\sin ^{2} \theta / 2+100 \mathrm{C}$ were made to get the weight-average molecular weight \bar{M}_{w}, the second virial coefficient A_{2}, and the z average mean-square radius of gyration $\left(\overline{S^{2}}\right)_{z}$; the latter was converted to $\left(\overline{\mathrm{S}^{2}}\right)_{\mathrm{w}}$ by Eq. (4) [22]

$$
\begin{equation*}
\left(S^{2}\right)_{w}=\left(S^{2}\right)_{z}(h+1) /(h+2+\beta) \tag{4}
\end{equation*}
$$

where $h=\left[\left(M_{w} / M_{n}\right)-1\right]^{-1}$ in Schulz-Zimm distribution

$$
f(N)=\left[Y^{(h+1)} / \Gamma(h+1)\right] e^{-Y N_{N} h} d N
$$

and β is obtained from

$$
\overline{\left(\mathbf{r}^{2}\right)_{w}}=A M^{1+\beta}
$$

or

$$
\beta=(2 a-1) / 3
$$

In the above relations, M is the molecular weight and a is the exponent in the Mark-Houwink equation. The values of β for the systems under investigation were calculated by using the exponents of the respective Mark-Houwink relations, and $\left(\overline{\mathrm{S}^{2}}\right)_{\mathrm{w}}$ was then converted to $\left(\overline{\mathrm{r}^{2}}\right)$ by
Eq. (5) [23]:

$$
\begin{equation*}
\left(\overline{\mathbf{r}^{2}}\right)_{\mathrm{w}}=\left(\overline{\mathbf{S}^{2}}\right)_{\mathrm{w}}(2+\beta)(3+\beta) \tag{5}
\end{equation*}
$$

Analysis of Copolymers
The copolymers were analyzed for nitrogen by the Kjeldahl method to estimate the percentage composition of $-\mathrm{C} \equiv \mathrm{N}$ in the copolymer chains and by NMR spectral analysis recorded with Varian A60D spectrometer in deuterochloroform at $60^{\circ} \mathrm{C}$, tetramethylsilane being used as internal standard.

RESULTS AND DISCUSSION

Characterization of Copolymer Samples

Generally, a statistical copolymer has three kinds of heterogeneity, that is, molecular weight distribution, composition fluctuation among different molecules, and sequence length distribution. It was expected that because of the reaction mechanism the copolymers prepared in this experiment would be practically homogeneous in both composition and sequence length (1:1). The copolymer fractions found to contain 49.8 and 49.9 mole $\%$ of nitriles in the PMANS and PANS chains, respectively, as determined by elemental analysis for nitrogen for the methacrylonitrile and acrylonitrile contents (standard Kjeldahl analysis).

The NMR spectra in deuterochloroform at $60^{\circ} \mathrm{C}$ were recorded to ascertain the microstructures and compositons of PMANS and PANS. The NMR spectrum of PMANS showed a phenyl proton peak at 3.02τ without a shoulder, peaks due to -CH and $-\mathrm{CH}_{2}$ protons at 7.25τ and 8.60τ, and a peak due to $-\mathrm{CH}_{3}$ protons at 9.22τ. The ratio of the relative areas of the phenyl proton peak and peaks due to $-\mathrm{CH},-\mathrm{CH}_{2}$, and $-\mathrm{CH}_{3}$ protons of both the monomer units in the copolymer chain was found to be $1: 1$ as expected from kinetics. The absence of a shoulder in the phenyl proton peak at 3.02τ, characteristic of the ortho proton, clearly indicated that the sequence length of styrene unit is less than three in the copolymer, and hence the copolymer has nearly an alternating nature [24-26]. In the NMR spectrum of PANS, peaks due to phenyl protons of styrene units appeared at 2.80τ without any shoulder, indicating the absence of blocks in the copolymer [24-26]; the peaks due to -CH and $-\mathrm{CH}_{2}$ protons of both the monomer units in the copolymer chain appeared at 7.25τ and 8.20τ, respectively. From the ratio of the relative areas of the above peaks, the composition of copolymer was found to be $1: 1$.

The heterogeneity in composition of the copolymer was further examined by light scattering measurements. Stockmayer et al. [1], and Bushuk and Benoit [27] showed that molecular weights obtained by light scattering for copolymers were only apparent molecular weights. Leng and Benoit [28] derived an equation to obtain the dimensions of copolymers (heterogeneous in composition) by light scattering. Light scattering measurements of single fraction of copolymer PMANS were made in various solvents, chloroform ($\mathrm{dn} / \mathrm{dc}=0.132, \overline{\mathrm{M}}_{\mathrm{app}}=$ 3.427×10^{5}); methyl ethyl ketone ($\mathrm{dn} / \mathrm{dc}=0.186 ; \overline{\mathrm{M}}_{\mathrm{app}}=3.354 \times 10^{5}$), acetone ($\mathrm{dn} / \mathrm{dc}=0.216, \overline{\mathrm{M}}_{\text {app }}=3.151 \times 10^{5}$). The values of $\overline{\mathrm{M}}_{\mathrm{app}}$ obtained were almost independent of solvent used, which suggested that the composition distribution of the copolymer sample was narrow.

So, the value of $\bar{M}_{\text {app }}$ determined in single solvent may be regarded as true molecular weight. Thus the light scattering equation, [Eq. (4)] could be used for the determination of molecular dimensions of the copolymer. The ($\mathrm{dn} / \mathrm{dc}$) values of the different fractions of the same copolymer in the same solvent vary a little about the mean value, which also showed that the composition distribution with respect to molecular weight was negligible. The light scattering measurements of PMANS were made in methyl ethyl ketone (9 samples designated PMANS $_{1}$ to PMANS $_{9}$); in dimethylformamide (6 samples designated PMANS $_{A}$ to PMANS ${ }_{F}$), and in ethyl acetate (5 fractions designated PMANS $_{1}$ to PMANS ${ }_{V}$). The molecular weights of PANS fractions were determined in methyl ethyl ketone (6 samples designated PANS $_{1}$ to PANS $_{6}$) and dimethylformamide (6 samples designated PANS ${ }_{A}$ to PANS $_{F}$) by light scattering measurements.

Limiting Viscosity Number-Molecular Weight Relationships

The double logarithmic plots of $[\eta]$ and \bar{M}_{w} for PMANS in methyl ethyl ketone, dimethylformamide, acetone, and ethyl acetate at $30^{\circ} \mathrm{C}$ yielded the Mark-Houwink relations (6), (7), (8), and (9), and the double logarithmic plots of $[\eta]$ and \bar{M}_{w} for PANS in methyl ethyl ketone, dimethylformamide, and acetone at $30^{\circ} \mathrm{C}$ yielded the MarkHouwink relations (10), (11), and (12) respectively (Figs. 1 and 2, Tables 1, 2, and 3).

$$
\begin{align*}
& {[\eta]=1.635 \times 10^{-2} \overline{\mathrm{M}}_{\mathbf{w}}^{0.67}} \tag{6}\\
& {[\eta]=4.732 \times 10^{-3} \overline{\mathrm{M}}_{\mathrm{w}}^{0.80}} \tag{7}\\
& {[\eta]=1.059 \times 10^{-2} \overline{\mathrm{M}}_{\mathbf{w}}^{0.70}} \tag{8}\\
& {[\eta]=5.278 \times 10^{-2} \overline{\mathrm{M}}_{\mathrm{w}}^{0.55}} \tag{9}\\
& {[\eta]=13.710 \times 10^{-2} \overline{\mathrm{M}}_{\mathbf{w}}^{0.53}} \tag{10}\\
& {[\eta]=5.750 \times 10^{-2} \overline{\mathrm{M}}_{\mathbf{w}}^{0.60}} \tag{11}\\
& {[\eta]=4.17 \times 10^{-2} \overline{\mathrm{M}}_{\mathbf{w}}^{0.65}} \tag{12}
\end{align*}
$$

FIG. 1. Plot of molecular weight vs. intrinsic viscosity for poly(methacrylonitrile-co-styrene) in various solvents: (A) methyl ethyl ketone; (B) acetone; (C) dimethylformamide; (D) ethyl acetate.

The values of the exponents a in Eqs. (6)-(9) show the solvent power for PMANS in the order, DMF $>$ acetone $>$ MEK $>$ ethyl acetate. The values of the exponents a in the Mark-Houwink relations for PANS [Eqs. (10)-(12)] show the solvent power in the order DMF > acetone $>$ MEK.

FIG. 2. Plot of molecular weight vs. intrinsic viscosity for Poly-(acrylonitrile-co-styrene) in various solvents: (A) methyl ethyl ketone;
(B) dimethylformamide; (C) acetone.

Root-Mean-Square End-to-End Distance-Molecular Weight Relations

From the $\log -\log$ plots of $\left(\overline{\mathbf{r}^{2}}\right)_{\mathrm{w}}{ }^{1 / 2}$ and $\overline{\mathrm{M}}_{\mathrm{w}}$ for PMANS and PANS in MEK and DMF the relations (13)-(16) have been established.
For PMANS/MEK:

$$
\begin{equation*}
\left(\overline{r^{2}}\right)_{W}^{1 / 2}=1.862 \overline{\mathrm{M}}_{\mathrm{W}} 0.50 \tag{13}
\end{equation*}
$$

For PMANS/DMF:

$$
\begin{equation*}
\left(\overline{\mathrm{r}^{2}}\right)_{\mathrm{W}}^{1 / 2}=1.718 \overline{\mathrm{M}}_{\mathrm{w}}^{0.50} \tag{14}
\end{equation*}
$$

For PANS/MEK:

$$
\begin{equation*}
\left(\overline{r^{2}}\right)_{w}^{1 / 2}=2.07 \bar{M}_{w}^{0.50} \tag{15}
\end{equation*}
$$

For PANS/DMF:

$$
\begin{equation*}
{\left.\overline{\left(r^{2}\right.}\right)_{W}^{1 / 2}=1.99 \overline{\mathrm{M}}_{\mathrm{w}}}^{0.51} \tag{16}
\end{equation*}
$$

TABLE 1. Parameters Obtained from Light Scattering and Viscosity ${ }^{\text {a }}$

Fraction	$\begin{aligned} & M_{w} \times 10^{-5} \\ & (\mathrm{~g} / \text { mole }) \end{aligned}$	$\begin{aligned} & {[\eta]} \\ & (\mathrm{ml} / \mathrm{g}) \end{aligned}$	\mathbf{k}_{1}	$\begin{aligned} & \left(\overline{\mathrm{r}^{2}}\right)_{\mathrm{w}} \\ & \times 10^{11} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & \left(\overline{\mathbf{r}^{2}}\right)_{\mathrm{w}} 1 / 2 \\ & (\AA) \end{aligned}$	$\begin{aligned} & \left(\overline{r_{0}^{2}}\right)_{w}^{1 / 2} \\ & (\AA)^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2} \times 10^{4} \\ & \mathrm{cc}- \\ & \text { mole } / \mathrm{g}^{2} \end{aligned}$	α	$\begin{aligned} & \Phi \times 10^{23} \\ & (\mathrm{cgs}) \end{aligned}$
PMANS ${ }_{1}$	3.98	98.4	0.33	11.50	1070	419	2.89	1.286	0.247
PMANS 2	3.29	86.2	0.32	11.80	1090	379	1.88	1.270	0.268
PMANS ${ }_{3}$	3.09	81.4	0.39	7.85	890	369	1.44	1.254	0.231
PMANS $_{4}$	2.79	75.8	0.40	7.49	870	347	2.46	1.247	0.211
PMANS ${ }_{5}$	3.46	88.3	0.36	-	-	387	3.18	-	-
PMANS ${ }_{6}$	2.27	62.3	0.20	9.58	980	317	2.16	1.195	0.200
PMANS_{7}	1.67	50.1	0.56	-	-	273	-	-	-
PMANS_{8}	1.12	41.5	0.46	-	-	224	-	-	-
PMANS ${ }_{9}$	2.76								

[^2]TABLE 2. Parameters Obtained from Light Scattering and Viscosity ${ }^{\text {a }}$

$\begin{aligned} & \overline{\mathrm{M}}_{\mathrm{w}} \times 10^{-5} \\ \text { Fraction } & (\mathrm{g} / \text { mole }) \end{aligned}$	$\begin{aligned} & {[\eta]} \\ & (\mathrm{ml} / \mathrm{g}) \end{aligned}$	k_{1}	$\begin{aligned} & \left(\mathrm{r}^{2}\right)_{\mathrm{w}} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\left(\mathrm{r}^{2}\right)_{\mathrm{w}}$ (A)	$\begin{aligned} & \left(r_{0}{ }^{2}\right) \\ & (\AA)^{b} \end{aligned}$	$\mathrm{A}_{2} \times$ (ccmole	α	$\begin{aligned} & \Phi \times 1 \\ & (\mathrm{cgs}) \end{aligned}$
PMANS $_{\text {A }} \mathbf{4 . 1 6}$	146.2	0.24	10.73	1040	438	3.07	1.467	0.587
$\mathrm{PMANS}_{\mathrm{B}} 3.62$	121.2	0.17	10.85	1040	405	2.76	1.400	0.432
PMANS $_{C}{ }_{\text {C }} 3.00$	112.7	0.18	7.68	880	372	3.37	1.406	0.425
PMANS $_{\text {D }}{ }^{2.85}$	110.2	0.12	8.63	930	356	3.27	1.419	0.434
$\mathrm{PMANS}_{\text {E }}{ }^{2.29}$	98.0	0.11	7.62	870	316	3.37	1.420	0.335
PMANS $_{\text {F }} \mathbf{2 . 2 3}$	86.2	0.10	7.55	870	309	4.19	1.357	0.310
$\begin{gathered} { }^{\text {a Polymer, }} \text { poly(m } \\ \lambda=4358 \AA ; \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}= \\ \text { b From Flory's eq }^{\text {Pa }} \end{gathered}$	acrylo $11 ; \mathrm{h}=$ ion.	trile0; dn	$\begin{array}{r} \text { - styre } \\ =0.1 \end{array}$	Iven 003;	$\begin{aligned} & \text { ethylf } \\ & .8 ; \beta \end{aligned}$	ide;	atur	

TABLE 3. Parameters Obtained from Light Scattering and Viscosity

Polymer	Solvent	$\begin{aligned} & \overline{\mathbf{M}}_{W} \\ & \times 10^{-5} \\ & (\mathrm{~g} / \text { mole }) \end{aligned}$	$\begin{aligned} & \left(\overline{\mathrm{S}}^{2}\right) \\ & \times 10^{11} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & \left(\overline{r^{2}}\right)_{\mathrm{w}}^{1 / 2} \\ & (\AA) \end{aligned}$	$\begin{aligned} & {[\eta]} \\ & (\mathrm{ml} / \mathrm{g}) \end{aligned}$	k_{1}	$\begin{aligned} & \left(\overline{r_{0}{ }^{2}}\right)_{w}^{1 / 2} \\ & (\AA)^{a} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2} \times 10^{4} \\ & (\mathrm{cc}- \\ & \left.\mathrm{mole} / \mathrm{g}^{2}\right) \end{aligned}$	α	$\begin{aligned} & \Phi \times 10^{-23} \\ & (\mathrm{cgs}) \end{aligned}$
PANS_{1}	MEK ${ }^{\text {b }}$	15.9	6.4	1690	241.6	0.37	993	3.90	1.104	0.824
PANS_{2}		8.13	4.42	1440	210.2	0.42	725	4.74	1. 187	0.582
PANS_{3}		7.36	4.20	1410	190.8	0.36	714	3.62	1.147	0.516
PANS_{4}		6.73	4.02	1380	173.0	0.40	687	4.74	1.124	0.466
PANS_{5}		6.14	3.94	1360	163.2	0.38	643	3.63	1.123	0.400
PANS ${ }_{\text {S }}$		4.93	2.81	1150	143.8	0.46	577	4.46	1.115	0.475
$\mathrm{PANS}_{\text {A }}$	DMF ${ }^{\text {c }}$	11.10	6.96	1930	352.3	0.30	931	3.49	1.294	0.581
$\mathrm{PANS}_{\text {B }}$		10.98	5.12	1650	332.0	0.21	874	4.34	1.298	0.764
PANS_{C}		7.48	3.36	1340	280.8	0.31	764	5.03	1.306	0.936
$\mathrm{PANS}_{\text {D }}$		7.19	3.08	1280	274.2	0.28	707	4.60	1.347	0.885
$\mathrm{PANS}_{\text {E }}$		4.66	3.02	1270	219.6	0.27	619	3.31	1.303	0.560
PANS $_{F}$		2.09	2.80	1220	122.0	0.13	403	2.16	1.210	0.148

[^3]
Molecular Weight Dependence of Second Virial

 CoefficientFrom the $\log -\log$ plots of the second virial coefficient A_{2} and the weight-average molecular weight $\overline{\mathrm{M}}_{\mathrm{w}}$ the mathematical relations (17)-(19) have been established for the systems PMANS/MEK, PMANS/DMF and PANS/DMF (Tables 1-3).

For PMANS/MEK:

$$
\begin{equation*}
A_{2}=1.347 \times 10^{-2} \bar{M}_{w}^{-0.33} \tag{17}
\end{equation*}
$$

For PMANS/DMF:

$$
\begin{equation*}
A_{2}=6.409 \times 10^{-4} \bar{M}_{w}^{-0.42} \tag{18}
\end{equation*}
$$

For PANS/DMF:

$$
\begin{equation*}
\mathrm{A}_{2}=13.40 \times 10^{-2} \overline{\mathrm{M}}_{\mathrm{w}}^{-0.42} \tag{19}
\end{equation*}
$$

The values of second virial coefficient scattered too much to permit qualitative relation to be obtained between A_{2} and \bar{M}_{w} in MEK for PANS. It has been observed that A_{2} decreases as the size of the molecule increases.

Flory Constant K_{θ} and Unperturbed Dimensions

Flory's constant K_{θ} and hence unperturbed dimensions were found by using graphical procedures, by Flory-Fox-Schaefgen (F-F) [29], Kurata-Stockmayer (K-S) [30], Stockmayer-Fixman (S-F) [31], and Ptitsyn-Inagaki (P-I) [32] from the intrinsic viscosity data of known molecular weight in nonideal solvents. The values of K_{θ} obtained for the systems PMANS/MEK and PMANS/acetone are more or less the same. All the methods gave same values of K_{θ} for each system. The value of K_{θ} obtained for the system PMANS/DMF, however was found to be higher than the value obtained for the PMANS/MEK and PMANS/acetone aystems. The K_{θ} values obtained for the systems PANS/MEK and PANS/acetone are same, except the P-I method gave

FIG. 3. Plots of (A) Flory-Fox, (B) Kurata-Stockmayer, (C) Stockmayer-Fixman and (D) Ptitsyn-Inagaki expressions for poly(meth-acrylonitrile-co-styrene); solvent: methyl ethyl ketone.
higher values in both solvents. The value of K_{θ} obtained for PANS/ DMF is higher than the value obtained for the systems PANS/MEK and PANS/acetone (Table 4). The higher values of K_{θ} in DMF than in MEK or acetone may be due to a specific solvent effect arising as a result of changes in the effective bond length for the unperturbed state of the copolymer in dimethylformamide and methyl ethyl ketone at the same temperature varying with apparent specific volume of the polymer in the solvent. The data were treated according to S-F. The

TABLE 4. Comparison of Calculated Values of K_{θ} Obtained from $[\eta]-\bar{M}_{\mathbf{w}}$ Data

		$\mathrm{K}_{\theta} \times 10^{2}$			
Polymer	Solvent	F-F	K-S	S-F	P-I
PMANS	Methyl ethyl ketone	8.28	7.96	8.50	8.56
	Acetone	7.96	7.96	8.50	8.56
	Dimethylformamide	9.28	8.94	9.00	9.05
PANS	Methyl ethyl ketone	15.62	15.62	15.00	18.07
	Acetone	15.62	14.03	15.00	16.95
	Dimethylformamide	16.44	18.53	18.00	19.21

constant $\left(\overline{r_{0}{ }^{2}} / \mathrm{M}\right)^{1 / 2}$, which is the characteristic of the unperturbed dimension of the dissolved macromolecule [33, 34], was calculated for each copolymer in methyl ethyl ketone and dimethylformamide. The unperturbed mean-square end-to-end distance for the free rotation model of the polymer chain $\overline{r_{0 f}{ }^{2}}$ is given by

$$
\left(\overline{r_{0 f}^{2}}\right)=n \ell^{2}(1-\cos \theta) /(1+\cos \theta)
$$

where n is the number of carbon atoms in the chain, ${ }_{0}$ is the bond length, and θ is the valence angle. Taking $\ell=1.54 \AA$ and $\theta=109.5^{\circ}$,
 be taken as a measure of the hindrance to free rotation, was calculated in methyl ethyl ketone and dimethylformamide. The values of σ for PMANS in methyl ethyl ketone and dimethylformamide are 2.00 and 2.04. The values of steric factors for polystyrene and poly(methacrylonitrile (PMAN) are 2.22 and 1.90 , respectively. It shows that the copolymer coil is stiffer than that of PMAN and more flexible than that of polystyrene. From the values of σ for PANS and PMANS, it can be noticed that the former is stiffer than latter.

Flory's Universal Parameter

The universal parameter, Φ for PMANS/MEK, PMANS/DMF, PANS/MEK, and PANS/DMF was found to be 1×10^{23} (Tables $1-3$) which is less than the normal value 2.86×10^{23}. Such low values for

TABLE 5. Second Virial Coefficient of PMANS and PANS:							Theoretical and Experimental Values

the universal parameter are not uncommon [35-39]. The possible factors that affect the magnitude of Φ are: (a) non-Gaussian distribution of chain segments, (b) branching; (c) molecular weight heterogeniety, and (d) chain stiffness. It has been found that in the case of vinyl polymers, the influence of non-Gaussian distribution is negligible. Under the conditions employed for the preparation of this copolymer, only a linear chain is expected and the effect of branching could be ruled out. Even after applying the correction for molecular weight heterogeneity and excluded volume effect, the values were low. The reasons for the low values of Φ obtained for the systems under investigation are not quite clear at present.

Second Virial Coefficient

The second virial coefficient, A_{2}, was calculated for PMANS and PANS in methyl ethyl ketone and dimethylformamide by the OrofinoFlory equation [40]:

$$
\begin{equation*}
A_{2}=\left(2^{5 / 2} N \pi / 27\right)\left[\left(\bar{r}^{2}\right)_{w}^{3 / 2} / \bar{M}_{w}^{2}\right] \ln \left[1+(\pi / 2)^{1 / 2}\left(\alpha^{2}-1\right)\right] \tag{20}
\end{equation*}
$$

with known values of $\left(r^{2}\right)_{w}, \bar{M}_{w}$, and α, where α was computed from the relation $[\eta]=\mathbf{K}_{\theta} \overline{\mathrm{M}}_{\mathrm{w}}{ }^{1 / 2} \alpha^{2.43}$.

For the systems PMANS/MEK and PMANS/DMF, theoretically calculated values are higher than the experimental values, and for the systems PANS/MEK and PANS/DMF, the agreement between experimental and calculated values is fairly good (Table 5).

ACKNOWLEDGMENT

This work is abstracted from the thesis of Venkataramana Reddy [41], One of the authors (G. V. R. R.) is grateful to the Council of Scientific and Industrial Research, New Delhi, for the award of a research fellowship.

REFERENCES

[1] W. H. Stockmayer, L. D. Moore, Jr., M. Fixman, and B. N. Epstein, J. Polym. Sci., 16, 517 (1955).
[2] H. Utiyama and M. Kurata, Repts. Progr. Polym. Phys. Japan, 6, 29 (1963).
[3] $\overline{\text { Y. Shimura, J. Polym. Sci. A-2, 4, } 423 \text { (1966). }}$
[4] M. Shima and A. Kotera, Makromol. Chem., 14, 172 (1963).
[5] A. Kotera, T. Saito, Y. Watanabe, and M. Ohama, Makromol. Chem., 87, 195 (1965).
[6] S. Krause, J. Phys. Chem., 65, 1618 (1961); Ibid., 68, 1948 (1964).
[7] S. Schlick and M. Levy, J. Phys. Chem., 64, 883 (1960).
[8] J. R. Urmin and J. M. Stearne, Makromol. Chem., 78, 194, 204 (1964).
[9] H. Inagaki and T. Miyamato, Makromol. Chem., 87, 166 (1965).
[10] G. M. Burnett, P. Meares, and C. Paton, Trans. Faraday Soc., 58, 737 (1962).
[11] A. Weissberger and E.S. Proskauer, Technique of Organic Chemistry, Vol. 7, 2nd ed., Interscience, New York, 1955, pp. 335, 385.
[12] F. M. Lewis, C. Walling, W. Cummings, E. R. Briggs, and W. J. Wenisch, J. Amer. Chem. Soc., 70, 1527 (1948).
[13] F. M. Lewis, F. R. Mayo, and W. F. Hulse, J. Amer. Chem. Soc., 67, 1701 (1945).
[14] P. W. Allen, Techniques of Polymer Characterization, Butterworths, London, 1959.
[15] L. Utracki, J. Polym. Sci. A-2, 4, 717 (1966).
$16]$ M. L. Huggins, J. Amer. Chem. Soc., 64, 2716 (1942).
$17]$ E. O. Kraemer, Ind. Eng. Chem., 30, 1200 (1958).
[18] G. V. Schulz and F. Blaschke, J. Prakt. Chem., 158, 130 (1941).
[19] B. A. Brice, M. Halwer, and R. Speiser, J. Opt. Soc. Amer., 40, 768 (1950).
[20] B. A. Brice, M. Halwer, and R. Speiser, J. Opt. Soc. Amer., 30, 363 (1946).
[21] B. H. Zimm, J. Chem. Phys., 16, 1093, 1099 (1948).
[22] R. L. Cleiand, J. Polym. Sci., 27, 349 (1958).
[23] A. Peterlin, J. Chem. Phys., 2 $\overline{3}, 2464$ (1955).
[24] F. A. Bovey, G. V. D. Tiers, and F. Fillipovich, J. Polym. Sci., 38, 73 (1959).
[25] V.D. Mochel and W. E. Claxton, J. Polym. Sci. A-1, 9, 345 (1971).
[26] K. S. V. Srinivasan and M. Santappa, J. Polym. Sci. Polym. Phys. Ed., 11, 331 (1973).
[27] W. Bushuk and H. Benoit, Can. J. Chem., 36, 1616 (1958).
28] M. Leng and H. Benoit, J. Polym. Sci., 57, 263 (1962).
[29] P. J. Flory and T. G. Fox, J. Amer. Chem. Soc., 73, 1904 (1951).
[30] M. Kurata, W. H. Stockmayer, and A. Roig, J. Chem. Phys., 33, 151 (1960).
[31] \bar{W}. H. Stockmayer and M. Fixman, J. Polym. Sci. C, 1, 137 (1963).
[32] H. Inagaki, H. Suzuki, and M. Kurata, J. Polym. Sci. C., 15, 409 (1966).
[33] P. J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, N. Y., 1953.
[34] R. L. Miller, The Structure of Polymers, Reinhold, New York, 1966.
[35] K. Karunakaran and M. Santappa, J. Polym. Sci. A-2, 6, 713 (1968).
[36] K. Karunakaran and M. Santappa, Proc. Ind. Acad. Sci., 67, 176 (1968).
37] S. Krause, J. Phys. Chem., 68, 1948 (1964).
$38]$ G. Sitaramaiah, J. Polym. Sci. A, 3, 2743 (1965).
$39]$ Q. A. Trementozzi, J. Polym. Sci., 36, 113 (1959).
$40]$ T. A. Orofino and P. J. Flory, J. Chem. Phys., 26, 1069 (1957).
[41] G. Venkataramana Reddy, Ph.D., Thesis, University of Madras, 1976.

Accepted by editor June 10, 1977
Received for publication June 24, 1977

[^0]: *Present address: Central Leather Research Institute, Adyar, Madras-20, India.

[^1]: Copyright © 1978 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

[^2]: ${ }^{\text {a }}$ Polymer, poly(methacrylonitrile-co-styrene); solvent, methyl ethyl ketone; temperature, $30^{\circ} \mathrm{C}$; $\lambda=4358 \mathrm{~A} ; \mathrm{dn} / \mathrm{dc}=0.183 \pm 0.003 ; \mathrm{h}=10 ; \mathrm{a}=0.675 ; \beta=0.117 ; \overline{\mathrm{M}}_{\mathbf{w}} \sqrt{\mathrm{M}_{\mathrm{n}}}=1.11$. ${ }^{\mathrm{b}}$ From Flory's equation.

[^3]: ${ }_{b}$ From Flory's equation.
 ${ }^{\mathrm{b}}$ Polymer, poly(acrylonitrile-co-styrene); solvent, methyl ethyl ketone; temperature, $30^{\circ} \mathrm{C} ; \lambda=4358 \AA$; $\mathrm{dn} / \mathrm{dc}=0.182 \pm 0.003 ; \mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}=1.376 ; \mathrm{h}=2.5 ; \mathrm{a}=0.53 ; \beta=0.02$. $4358 \AA ; \mathrm{dn} / \mathrm{dc}=0.105 \pm 0.003 ; \overline{\mathrm{M}}_{\mathrm{w}} / \overline{\mathrm{M}}_{\mathrm{n}}=1.27 ; \mathrm{h}=4 ; \mathrm{a}=0.65 ; \beta=0.1$.

